科学家详解,太阳表面发现巨大射流

2019-11-22 13:32栏目:数理科学
TAG:

太阳物理学家报告称,他们发现了其长期寻找的迄今太阳炽热表面上巨大“射流”存在的最佳证据,其中一些射流的长度足以跨越地球到月球距离的一半。与之前观测到的太阳表面上的其他结构相比,该射流的单元结构更大,移动速度更慢。

科学家详解:“帕克”关注太阳的哪些秘密?

美国宇航局轨道太阳动力天文台的数据显示,太阳等离子体的流动模式横跨约20万千米。这种巨大的单元结构也许可以解释,为何太阳在赤道附近的旋转速度比其两极附近快30%。新研究发现,沿着旋转方向移动的物质往往也向着赤道移动,从而协助运送角动量,并使太阳中部旋转得越来越快。

■本报记者 甘晓

观测团队成员之一、NASA马歇尔空间飞行中心的太阳物理学家David Hathaway称,该流动很可能与磁场如何在太阳内部移动以及太阳黑子如何出现在其表面有关。这意味着这些流动会在太阳风暴中扮演重要角色,而太阳风暴会破坏地球上的电网和电信基础设施。Hathaway和同事将其发现发表在12月5日的《科学》杂志上。

8月12日,“帕克”太阳探测器发射升空,将在未来7年内抵达距离太阳表面约610万千米之处,成为有史以来最靠近太阳的航天器。据美国宇航局官方信息,“帕克”将关注三个有关太阳的基本问题,即太阳风的加速、太阳风暴现象的原理以及日冕层的高温。

1801年,天文学家William Herschel首次描述了这种单元结构的较小版本。他所观测到的这些结构在太阳上的移动模式横跨约1000千米,后来被称为颗粒。到20世纪60年代,物理学家发现了“超细粒”,跨度约3万千米。1968年,研究人员预测更大的“巨大粒子”是存在的,其跨度约为20万千米。

为何要了解这三个问题?已经知道了什么?对这三个问题的探索有什么意义?为此,《中国科学报》记者采访相关专家,对“帕克”的科学问题进行详细解释。

之前,曾有一些团队报告称发现了巨大粒子,但证据并不确凿,这在很大程度上是因为巨大粒子相对于其他太阳结构来说,移动更为缓慢。颗粒组织中的太阳等离子体移动速度为每秒3000米,超细粒速度为每秒300到500米。至于巨大颗粒,其速度是极其缓慢的,只有每秒8米左右。

悬而未决的理论问题

观测团队成员之一、范德比尔特大学的研究生Lisa Upton表示,这种缓慢的速度使其在其他各种频繁的射流中很难被检测到。

油炸冰淇淋,是太阳物理学家对太阳大气物理状态最喜欢用的一个比喻。他们实际上想说的是,太阳的外层比它的表面温度还要高。

正规棋牌游戏平台 ,于是,Hathaway、Upton和暑期学生Owen Colegrove尝试利用SDO对太阳进行了持续观测。他们跟踪单个超细粒的移动,因为他们认为其移动是随着大规模的缓慢移动而进行的。最终,研究团队发现了持续长达6个月的长期移动模式。

1941年,瑞典光谱学家本格特·艾德兰解释了此前获得的一条日冕辐射谱线,其为铁原子的13次电离时产生,这只有上百万度的高温才会发生。从此,越来越多的证据表明,太阳大气层从表面到外层,则从6000摄氏度逐渐加温,日冕层已经炽热到上千万摄氏度。

美国国家大气研究中心物理学家Mark Miesch称,这项新研究证实了他和其他人在巨大对流颗粒方面所做的建模工作。不过,模型所显示的情况与Hathaway团队所观测的现象有一些差异。比如,模型显示,巨大颗粒会在太阳赤道附近由北向南排列,而新观测数据并未体现这一点。

这个现象不仅和地球的情况大相径庭,还严重违反了热力学第二定律。为什么会这样?多年观测数据让科学家们猜测,一定有额外的能量加速粒子的运动,导致了日冕的高温。

斯坦福大学太阳物理学家Junwei Zhao指出,实际上,巨大颗粒是在高纬度地区观测到的,如果在更低的纬度上也能观测这一现象将更说明问题。“它是否能说服整个科学界,仍有待观察。”Zhao如是说。

同样,“额外的能量”还导致另一个现象,即太阳风的加速。1958年,美国物理学家帕克通过理论模型,精确预测了日冕克服太阳引力发生膨胀的速度和磁场强度,并首次把日冕膨胀的现象命名为“太阳风”。他的预测表明,太阳风抵达太阳系行星时的速度远比其在太阳表面的大。日后的观测数据也表明,抵达地球轨道的太阳风速度达到每秒400至500公里。但帕克没能解释这一现象。

60年后的今天,“帕克”探测器将完成这一使命——为解释日冕反常高温和太阳风加速现象的额外能量来自哪里提供数据。

中科院国家空间科学中心研究员刘勇告诉《中国科学报》记者:“这两个问题是当前太阳物理理论方面尚未解决的关键问题,具有非常高的理论价值。”

波动还是磁重联?

当然,科学家对额外能量的观测和猜想从未停止。中科院国家天文台太阳活动预报团组首席研究员王华宁告诉《中国科学报》记者,目前,科学界对粒子加速的原因有“波动加热”和“磁重联加热”两种观点。

其中,“波动加热”认为,太阳光球附近的物质能量交换过程激发出各类等离子体波动。“等离子体波动和粒子相互作用,提升粒子运动的热速度,实现加热。”刘勇解释。

1994年由欧洲航天局和NASA共同发射的SOHO卫星观测到相关证据。“重的粒子比如氧离子加热温度更高,而质子没那么高。”刘勇表示。

“磁重联加热”观点的支持者认为,额外的能量来自于磁重联。当日冕中许多地方都发生这种小尺度的重联,就可能把磁场的能量转换为等离子体动能,即升高日冕温度。

王华宁指出:“这两种观点陆续都有实际观测的证据支持,但迄今为止没有定论。”在他看来,“帕克”探测器能够进入日冕外围,进行实地探测,有希望解决这一谜题。

具有现实意义的太阳风暴

在科学家们看来,“帕克”探测器对太阳风暴原理的探测具有现实意义。自1859年英国天文学家卡林顿首次观测到太阳耀斑起,这种持续时间较短、规模巨大的能量释放现象便受到人们的高度关注。

如今,太阳风暴已被视为灾害性空间天气,世界各国都在对此进行监测、预警和研究。

王华宁介绍,利用电磁现象开展的人类活动都有可能受到太阳风暴的影响,例如太阳风暴产生的高能粒子可能会伤害卫星载荷的元器件、损害身处太空的宇航员身体健康;太阳风暴形成强烈电磁辐射可能严重干扰通信和导航系统;太阳风暴触发的强烈磁暴甚至能够导致输电系统崩溃。

“由于对太阳风暴形成机制了解不够深入,人类还不具备准确预测其发生的时间和强度的能力。”长期从事太阳活动预报的王华宁表示,“很期待‘帕克’探测器为研究太阳风暴产生机制提供观测证据,进而形成符合观测事实的理论模型,为预测太阳风暴提供理论依据。”

2015年,中欧科学家联合提出了太阳风—磁层相互作用全景成像卫星工程,由中科院和欧洲航天局联合立项,旨在大倾角、大椭圆轨道上,对向阳侧磁层顶、极尖区和地球极光进行全景成像,同时对地磁场和等离子体进行原位测量,以提高人类对于太阳活动与地球磁场变化的相互关系的认知。

记者获悉,目前,该工程正在开展方案研制工作,预计2019年10月工程转入初样研制阶段。

《中国科学报》 (2018-08-14 第1版 要闻)更多阅读中国草原“天眼”将与美国“帕克”科研互动人类首个“触日”探测器升空:有望穿越日冕向太阳飞去!帕克探测器将比以往更接近神秘日冕

版权声明:本文由正规棋牌游戏平台发布于数理科学,转载请注明出处:科学家详解,太阳表面发现巨大射流